Dainik Rashifal

https://youtu.be/-_anft49BjU DAINIK RASHIFAL DAILY HOROSCOPE 09 MARCH 2017 PATLIPUTRAEXPRESS.IN SUBSCRIBE US FOR HOROSCOPE AND MORE WWW.JPGECOMMERCE.COM https://youtu.be/xF8KLyBKb1s LIKE SHARE AND SUBSCRIBE LIKE SHARE AND SUBSCRIBE LIKE SHARE AND SUBSCRIBE DAINIK RASHIFAL DAILY HOROSCOPE 28 MARCH 2017 https://youtu.be/qBdUL-3aQ28 @YouTube

JPGECOMMERCE.COM

Thursday, November 3, 2011

Special History Of Jupiter & Saturn

Jupiter  Astronomical symbol of Jupiter
Jupiter by Cassini-Huygens.jpg
A composite Cassini image of Jupiter. The dark spot is the shadow of Europa.
Designations
PronunciationListeni/ˈpɨtər/[1]
AdjectiveJovian
Epoch J2000
Aphelion816,520,800 km (5.458104 AU)
Perihelion740,573,600 km (4.950429 AU)
Semi-major axis778,547,200 km (5.204267 AU)
Eccentricity0.048775
Orbital period4,332.59 days
11.8618 yr
10,475.8 Jupiter solar days[4]
Synodic period398.88 days[5]
Average orbital speed13.07 km/s[5]
Mean anomaly18.818°
Inclination1.305° to Ecliptic
6.09° to Sun's equator
0.32° to Invariable plane[6]
Longitude of ascending node100.492°
Argument of perihelion275.066°
Satellites64
Physical characteristics
Mean radius69,911 ± 6 km[7][8]
Equatorialradius71,492 ± 4 km[7][8]
11.209 Earths
Polar radius66,854 ± 10 km[7][8]
10.517 Earths
Flattening0.06487 ± 0.00015
Surface area6.1419×1010 km2[8][9]
121.9 Earths
Volume1.4313×1015 km3[5][8]
1321.3 Earths
Mass1.8986×1027 kg[5]
317.8 Earths
1/1047 Sun[10]
Mean density1.326 g/cm3[5][8]
Equatorial surface gravity24.79 m/s2[5][8]
2.528 g
Escape velocity59.5 km/s[5][8]
Sidereal rotation
period
9.925 h[11] (9 h 55 m 30 s)
Equatorial rotation velocity12.6 km/s
45,300 km/h
Axial tilt3.13°[5]
North poleright ascension268.057°
17 h 52 min 14 s[7]
North poledeclination64.496°[7]
Albedo0.343 (Bond)
0.52 (geom.)[5]
Surface temp.
   1 bar level
   0.1 bar
minmeanmax
165 K[5]
112 K[5]
Apparent magnitude-1.6 to -2.94[5]
Angular diameter29.8" — 50.1"[5]
Atmosphere[5]
Surfacepressure20–200 kPa[12] (cloud layer)
Scale height27 km
Composition
89.8±2.0%hydrogen (H2)
10.2±2.0%helium
~0.3%methane
~0.026%ammonia
~0.003%hydrogen deuteride(HD)
0.0006%ethane
0.0004%water
Ices:
ammonia
water
ammonium hydrosulfide(NH4SH)
Jupiter is the fifth planet from the Sun and the largest planet within the Solar System.[13] It is a gas giant with mass one-thousandth that of the Sun but is two and a half times the mass of all the other planets in our Solar System combined. Jupiter is classified as a gas giant along with SaturnUranus and Neptune. Together, these four planets are sometimes referred to as the Jovian or outer planets.
The planet was known by astronomers of ancient times and was associated with the mythology and religious beliefs of many cultures. The Romans named the planet after the Roman god Jupiter.[14] When viewed from Earth, Jupiter can reach an apparent magnitude of −2.94, making it on average the third-brightest object in the night sky after the Moon and Venus. (Mars can briefly match Jupiter's brightness at certain points in its orbit.)
Jupiter is primarily composed of hydrogen with a quarter of its mass being helium; it may also have a rocky core of heavier elements. Because of its rapid rotation, Jupiter's shape is that of an oblate spheroid (it possesses a slight but noticeable bulge around the equator). The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century when it was first seen by telescope. Surrounding the planet is a faint planetary ring system and a powerful magnetosphere. There are also at least 64 moons, including the four large moons called the Galilean moons that were first discovered by Galileo Galilei in 1610. Ganymede, the largest of these moons, has a diameter greater than that of the planet Mercury.
Jupiter has been explored on several occasions by robotic spacecraft, most notably during the early Pioneer and Voyager flyby missions and later by the Galileo orbiter. The most recent probe to visit Jupiter was the Pluto-bound New Horizons spacecraft in late February 2007. The probe used the gravity from Jupiter to increase its speed. Future targets for exploration in the Jovian system include the possible ice-covered liquid ocean on the moon Europa.
Jupiter is composed primarily of gaseous and liquid matter. It is the largest of four gas giants as well as the largest planet in the solar system with a diameter of 142,984 km at its equator. The density of Jupiter, 1.326 g/cm3, is the second highest of the gas giant planets. The density is lower than any of the four terrestrial planets.Structure

Composition

Jupiter's upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume or fraction of gas molecules. Since a helium atom has about four times as much mass as a hydrogen atom, the composition changes when described as the proportion of mass contributed by different atoms. Thus the atmosphere is approximately 75% hydrogen and 24% helium by mass, with the remaining one percent of the mass consisting of other elements. The interior contains denser materials such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. The atmosphere contains trace amounts of methanewater vaporammonia, andsilicon-based compounds. There are also traces of carbonethanehydrogen sulfide,neonoxygenphosphine, and sulfur. The outermost layer of the atmosphere containscrystals of frozen ammonia.[15][16] Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found.[17]
The atmospheric proportions of hydrogen and helium are very close to the theoretical composition of the primordial solar nebula. Neon in the upper atmosphere only consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun.[18]Helium is also depleted, although only to about 80% of the Sun's helium composition. This depletion may be a result of precipitation of these elements into the interior of the planet.[19] Abundances of heavier inert gases in Jupiter's atmosphere are about two to three times that of the Sun.
Based on spectroscopySaturn is thought to be similar in composition to Jupiter, but the other gas giants Uranus and Neptune have relatively much less hydrogen and helium.[20]Because of the lack of atmospheric entry probes, high quality abundance numbers of the heavier elements are lacking for the outer planets beyond Jupiter.

Mass

Approximate size comparison of Earth and Jupiter, including the Great Red Spot
Jupiter's mass is 2.5 times that of all the other planets in our Solar System combined—this is so massive that its barycenter with the Sun lies above the Sun's surface at 1.068 solar radii from the Sun's center. Although this planet dwarfs the Earth with a diameter 11 times as great, it is considerably less dense. Jupiter's volume is that of about 1,321 Earths, yet the planet is only 318 times as massive.[5][21] Jupiter's radius is about 1/10 the radius of the Sun,[22] and its mass is 0.001 times the mass of the Sun, so the density of the two bodies is similar.[23] A "Jupiter mass" (MJ or MJup) is often used as a unit to describe masses of other objects, particularly extrasolar planets and brown dwarfs. So, for example, the extrasolar planet HD 209458 b has a mass of 0.69 MJ, whileCOROT-7b has a mass of 0.015 MJ.[24]
Theoretical models indicate that if Jupiter had much more mass than it does at present, the planet would shrink.[25] For small changes in mass, the radius would not change appreciably, and above about 500 M (1.6 Jupiter masses)[25] the interior would become so much more compressed under the increased gravitation force that the planet's volume would decrease despite the increasing amount of matter. As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve. The process of further shrinkage with increasing mass would continue until appreciable stellar ignition is achieved as in high-mass brown dwarfs around 50 Jupiter masses.[26] This has led some astronomers to term it a "failed star"[citation needed], although it is unclear whether the processes involved in the formation of planets like Jupiter are similar to the processes involved in the formation of multiple star systems.
Although Jupiter would need to be about 75 times as massive to fuse hydrogen and become a star, the smallest red dwarf is only about 30 percent larger in radius than Jupiter.[27][28] Despite this, Jupiter still radiates more heat than it receives from the Sun; the amount of heat produced inside the planet is similar to the total solar radiation it receives.[29] This additional heat radiation is generated by the Kelvin–Helmholtz mechanism through adiabatic contraction. This process results in the planet shrinking by about 2 cm each year.[30] When it was first formed, Jupiter was much hotter and was about twice its current diameter.[31]

Internal structure

This cut-away illustrates a model of the interior of Jupiter, with a rocky core overlaid by a deep layer of metallic hydrogen.
Jupiter is thought to consist of a dense core with a mixture of elements, a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen.[30] Beyond this basic outline, there is still considerable uncertainty. The core is often described as rocky, but its detailed composition is unknown, as are the properties of materials at the temperatures and pressures of those depths (see below). In 1997, the existence of the core was suggested by gravitational measurements,[30] indicating a mass of from 12 to 45 times the Earth's mass or roughly 3%–15% of the total mass of Jupiter.[29][32] The presence of a core during at least part of Jupiter's history is suggested by models of planetary formation involving initial formation of a rocky or icy core that is massive enough to collect its bulk of hydrogen and helium from the protosolar nebula. Assuming it did exist, it may have shrunk as convection currents of hot liquid metallic hydrogen mixed with the molten core and carried its contents to higher levels in the planetary interior. A core may now be entirely absent, as gravitational measurements are not yet precise enough to rule that possibility out entirely.[30][33]
The uncertainty of the models is tied to the error margin in hitherto measured parameters: one of the rotational coefficients (J6) used to describe the planet's gravitational moment, Jupiter's equatorial radius, and its temperature at 1 bar pressure. The Juno mission, which launched in August 2011, is expected to narrow down the value of these parameters, and thereby make progress on the problem of the core.[34]
The core region is surrounded by dense metallic hydrogen, which extends outward to about 78 percent of the radius of the planet.[29] Rain-like droplets of helium and neon precipitate downward through this layer, depleting the abundance of these elements in the upper atmosphere.[19][35]
Above the layer of metallic hydrogen lies a transparent interior atmosphere of hydrogen. At this depth, the temperature is above the critical temperature, which for hydrogen is only 33 K[36] (see hydrogen). In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a supercritical fluid state. It is convenient to treat hydrogen as gas in the upper layer extending downward from the cloud layer to a depth of about 1,000 km,[29] and as liquid in deeper layers. Physically, there is no clear boundary—gas smoothly becomes hotter and denser as one descends.[37][38]
The temperature and pressure inside Jupiter increase steadily toward the core. At the phase transition region where hydrogen—heated beyond its critical point—becomes metallic, it is believed the temperature is 10,000 K and the pressure is 200 GPa. The temperature at the core boundary is estimated to be 36,000 K and the interior pressure is roughly 3,000–4,500 GPa.[29]

Atmosphere

Jupiter has the largest planetary atmosphere in the Solar System, spanning over 5000 km in altitude.[39][40] As Jupiter has no surface, the base of its atmosphere is usually considered to be the point at which atmospheric pressure is equal to 10 bars, or ten times surface pressure on Earth.[39]

Cloud layers

This looping animation shows the movement of Jupiter's counter-rotating cloud bands. In this image, the planet's exterior is mapped onto acylindrical projection. Animation at larger widths:720 pixels1799 pixels.
Jupiter is perpetually covered with clouds composed of ammonia crystals and possiblyammonium hydrosulfide. The clouds are located in the tropopause and are arranged into bands of different latitudes, known as tropical regions. These are sub-divided into lighter-huedzones and darker belts. The interactions of these conflicting circulation patterns cause storms and turbulenceWind speeds of 100 m/s (360 km/h) are common in zonal jets.[41]The zones have been observed to vary in width, color and intensity from year to year, but they have remained sufficiently stable for astronomers to give them identifying designations.[21]
The cloud layer is only about 50 km deep, and consists of at least two decks of clouds: a thick lower deck and a thin clearer region. There may also be a thin layer of water clouds underlying the ammonia layer, as evidenced by flashes of lightning detected in the atmosphere of Jupiter. This is caused by water's polarity, which makes it capable of creating the charge separation needed to produce lightning.[29] These electrical discharges can be up to a thousand times as powerful as lightning on the Earth.[42] The water clouds can form thunderstorms driven by the heat rising from the interior.[43]
The orange and brown coloration in the clouds of Jupiter are caused by upwelling compounds that change color when they are exposed toultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are believed to be phosphorus, sulfur or possiblyhydrocarbons.[29][44] These colorful compounds, known as chromophores, mix with the warmer, lower deck of clouds. The zones are formed when rising convection cells form crystallizing ammonia that masks out these lower clouds from view.[45]
Jupiter's low axial tilt means that the poles constantly receive less solar radiation than at the planet's equatorial region. Convection within the interior of the planet transports more energy to the poles, balancing out the temperatures at the cloud layer.[21]

Great Red Spot and other vortices

This dramatic view of Jupiter's Great Red Spot and its surroundings was obtained by Voyager 1on February 25, 1979, when the spacecraft was 9.2 million km (5.7 million mi) from Jupiter. Cloud details as small as 160 km (100 mi) across can be seen here. The colorful, wavy cloud pattern to the left of the Red Spot is a region of extraordinarily complex and variable wave motion. To give a sense of Jupiter's scale, the white oval storm directly below the Great Red Spot is approximately the same diameter as Earth.
The best known feature of Jupiter is the Great Red Spot, a persistent anticyclonic storm that is larger than Earth, located 22° south of the equator. It is known to have been in existence since at least 1831,[46] and possibly since 1665.[47][48] Mathematical models suggest that the storm is stable and may be a permanent feature of the planet.[49] The storm is large enough to be visible through Earth-based telescopes with an aperture of 12 cm or larger.[50]
The oval object rotates counterclockwise, with a period of about six days.[51] The Great Red Spot's dimensions are 24–40,000 km × 12–14,000 km. It is large enough to contain two or three planets of Earth's diameter.[52] The maximum altitude of this storm is about 8 km above the surrounding cloudtops.[53]
Storms such as this are common within the turbulent atmospheres of gas giants. Jupiter also has white ovals and brown ovals, which are lesser unnamed storms. White ovals tend to consist of relatively cool clouds within the upper atmosphere. Brown ovals are warmer and located within the "normal cloud layer". Such storms can last as little as a few hours or stretch on for centuries.
Jupiter from Voyager 1 PIA02855 thumbnail 300px max quality.ogv
Time-lapse sequence from the approach of Voyager 1 to Jupiter, showing the motion of atmospheric bands, and circulation of the Great Red Spot. Full size video here
Even before Voyager proved that the feature was a storm, there was strong evidence that the spot could not be associated with any deeper feature on the planet's surface, as the Spot rotates differentially with respect to the rest of the atmosphere, sometimes faster and sometimes more slowly. During its recorded history it has traveled several times around the planet relative to any possible fixed rotational marker below it.
In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller. This was created when several smaller, white oval-shaped storms merged to form a single feature—these three smaller white ovals were first observed in 1938. The merged feature was named Oval BA, and has been nicknamed Red Spot Junior. It has since increased in intensity and changed color from white to red.[54][55][56]

Planetary rings

Jupiter has a faint planetary ring system composed of three main segments: an inner torus of particles known as the halo, a relatively bright main ring, and an outer gossamer ring.[57] These rings appear to be made of dust, rather than ice as with Saturn's rings.[29] The main ring is probably made of material ejected from the satellites Adrasteaand Metis. Material that would normally fall back to the moon is pulled into Jupiter because of its strong gravitational influence. The orbit of the material veers towards Jupiter and new material is added by additional impacts.[58] In a similar way, the moons Thebe and Amalthea probably produce the two distinct components of the dusty gossamer ring.[58] There is also evidence of a rocky ring strung along Amalthea's orbit which may consist of collisional debris from that moon.[59]

Magnetosphere

Aurora on Jupiter. Three bright dots are created by magnetic flux tubes that connect to the Jovian moons Io (on the left), Ganymede (on the bottom) and Europa (also on the bottom). In addition, the very bright almost circular region, called the main oval, and the fainter polar aurora can be seen.
Jupiter's broad magnetic field is 14 times as strong as the Earth's, ranging from 4.2 gauss(0.42 mT) at the equator to 10–14 gauss (1.0–1.4 mT) at the poles, making it the strongest in the Solar System (except for sunspots).[45] This field is believed to be generated by eddy currents—swirling movements of conducting materials—within the metallic hydrogen core. The volcanoes on the moon Io emit large amounts of sulfur dioxide forming a gas torus along the moon's orbit. The gas is ionized in the magnetosphere producing sulfur and oxygen ions. They, together with hydrogen ions originating from the atmosphere of Jupiter, form a plasma sheet in Jupiter's equatorial plane. The plasma in the sheet co-rotates with the planet causing deformation of the dipole magnetic field into that of magnetodisk. Electrons within the plasma sheet generate a strong radio signature that produces bursts in the range of 0.6–30 MHz.[60]
At about 75 Jupiter radii from the planet, the interaction of the magnetosphere with the solar wind generates a bow shock. Surrounding Jupiter's magnetosphere is a magnetopause, located at the inner edge of a magnetosheath—a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter's lee sideand extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all orbit within the magnetosphere, which protects them from the solar wind.[29]
The magnetosphere of Jupiter is responsible for intense episodes of radio emission from the planet's polar regions. Volcanic activity on the Jovian moon Io (see below) injects gas into Jupiter's magnetosphere, producing a torus of particles about the planet. As Io moves through this torus, the interaction generates Alfvén waves that carry ionized matter into the polar regions of Jupiter. As a result, radio waves are generated through a cyclotron maser mechanism, and the energy is transmitted out along a cone-shaped surface. When the Earth intersects this cone, the radio emissions from Jupiter can exceed the solar radio output.[61]

Orbit and rotation

Jupiter orbits the Sun at an average distance of about 778 million kilometers (about 5.2 AU), and completes an orbit every 11.86 years
Jupiter is the only planet that has a center of mass with the Sun that lies outside the volume of the Sun, though by only 7% of the Sun's radius.[62] The average distance between Jupiter and the Sun is 778 million km (about 5.2 times the average distance from the Earth to the Sun, or 5.2 AU) and it completes an orbit every 11.86 years. This is two-fifths the orbital period of Saturn, forming a 5:2orbital resonance between the two largest planets in the Solar System.[63] The elliptical orbit of Jupiter is inclined 1.31° compared to the Earth. Because of an eccentricity of 0.048, the distance from Jupiter and the Sun varies by 75 million km between perihelion and aphelion, or the nearest and most distant points of the planet along the orbital path respectively.
The axial tilt of Jupiter is relatively small: only 3.13°. As a result this planet does not experience significant seasonal changes, in contrast to Earth and Mars for example.[64]
Jupiter's rotation is the fastest of all the Solar System's planets, completing a rotation on its axisin slightly less than ten hours; this creates an equatorial bulge easily seen through an Earth-based amateur telescope. This rotation requires a centripetal acceleration at the equator of about 1.67 m/s2, compared to the equatorial surface gravity of 24.79 m/s2; thus the net acceleration felt at the equatorial surface is only about 23.12 m/s2. The planet is shaped as an oblate spheroid, meaning that the diameter across its equator is longer than the diameter measured between itspoles. On Jupiter, the equatorial diameter is 9275 km longer than the diameter measured through the poles.[38]
Because Jupiter is not a solid body, its upper atmosphere undergoes differential rotation. The rotation of Jupiter's polar atmosphere is about 5 minutes longer than that of the equatorial atmosphere; three systems are used as frames of reference, particularly when graphing the motion of atmospheric features. System I applies from the latitudes 10° N to 10° S; its period is the planet's shortest, at 9h 50m 30.0s. System II applies at all latitudes north and south of these; its period is 9h 55m 40.6s. System III was first defined by radio astronomers, and corresponds to the rotation of the planet's magnetosphere; its period is Jupiter's official rotation.[65]

Observation

The retrograde motion of an outer planet is caused by its relative location with respect to the Earth.
Jupiter is usually the fourth brightest object in the sky (after the Sun, the Moon and Venus);[45] at times Mars appears brighter than Jupiter. Depending on Jupiter's position with respect to theEarth, it can vary in visual magnitude from as bright as −2.9 at opposition down to −1.6 duringconjunction with the Sun. The angular diameter of Jupiter likewise varies from 50.1 to 29.8 arc seconds.[5] Favorable oppositions occur when Jupiter is passing through perihelion, an event that occurs once per orbit. As Jupiter approaches perihelion in March 2011, there was a favorable opposition in September 2010.[66]
Earth overtakes Jupiter every 398.9 days as it orbits the Sun, a duration called the synodic period. As it does so, Jupiter appears to undergo retrograde motion with respect to the background stars. That is, for a period Jupiter seems to move backward in the night sky, performing a looping motion.
Jupiter's 12-year orbital period corresponds to the dozen astrological signs of the zodiac, and may have been the historical origin of the signs.[21] That is, each time Jupiter reaches opposition it has advanced eastward by about 30°, the width of a zodiac sign.
Because the orbit of Jupiter is outside the Earth's, the phase angle of Jupiter as viewed from the Earth never exceeds 11.5°. That is, the planet always appears nearly fully illuminated when viewed through Earth-based telescopes. It was only during spacecraft missions to Jupiter that crescent views of the planet were obtained.[67]

Research and exploration

Pre-telescopic research

Model in the Almagest of the longitudinal motion of Jupiter (☉) relative to the Earth (⊕).
The observation of Jupiter dates back to the Babylonian astronomers of the 7th or 8th century BCE.[68] The Chinese historian of astronomy, Xi Zezong, has claimed that Gan De, a Chinese astronomer, made the discovery of one of Jupiter's moons in 362 BCE with the unaided eye. If accurate, this would predate Galileo's discovery by nearly two millennia.[69][70] In his 2nd century work the Almagest, the Hellenistic astronomer Claudius Ptolemaeus constructed a geocentric planetary model based on deferents and epicycles to explain Jupiter's motion relative to the Earth, giving its orbital period around the Earth as 4332.38 days, or 11.86 years.[71] In 499, Aryabhata, amathematician-astronomer from the classical age of Indian mathematics and astronomy, also used a geocentric model to estimate Jupiter's period as 4332.2722 days, or 11.86 years.[72]

Ground-based telescope research

In 1610, Galileo Galilei discovered the four largest moons of Jupiter—Io, Europa, Ganymede andCallisto (now known as the Galilean moons)—using a telescope; thought to be the first telescopic observation of moons other than Earth's. Galileo's was also the first discovery of a celestial motion not apparently centered on the Earth. It was a major point in favor of Copernicus' heliocentric theory of the motions of the planets; Galileo's outspoken support of the Copernican theory placed him under the threat of the Inquisition.[73]
During the 1660s, Cassini used a new telescope to discover spots and colorful bands on Jupiter and observed that the planet appeared oblate; that is, flattened at the poles. He was also able to estimate the rotation period of the planet.[16] In 1690 Cassini noticed that the atmosphere undergoes differential rotation.[29]
False-color detail of Jupiter's atmosphere, imaged by Voyager 1, showing the Great Red Spot and a passing white oval.
The Great Red Spot, a prominent oval-shaped feature in the southern hemisphere of Jupiter, may have been observed as early as 1664 by Robert Hooke and in 1665 by Giovanni Cassini, although this is disputed. The pharmacist Heinrich Schwabe produced the earliest known drawing to show details of the Great Red Spot in 1831.[74]
The Red Spot was reportedly lost from sight on several occasions between 1665 and 1708 before becoming quite conspicuous in 1878. It was recorded as fading again in 1883 and at the start of the 20th century.[75]
Both Giovanni Borelli and Cassini made careful tables of the motions of the Jovian moons, allowing predictions of the times when the moons would pass before or behind the planet. By the 1670s, it was observed that when Jupiter was on the opposite side of the Sun from the Earth, these events would occur about 17 minutes later than expected. Ole Rømer deduced that sight is not instantaneous (a conclusion that Cassini had earlier rejected[16]), and this timing discrepancy was used to estimate the speed of light.[76]
In 1892, E. E. Barnard observed a fifth satellite of Jupiter with the 36-inch (910 mm) refractor atLick Observatory in California. The discovery of this relatively small object, a testament to his keen eyesight, quickly made him famous. The moon was later named Amalthea.[77] It was the last planetary moon to be discovered directly by visual observation.[78] An additional eight satellites were subsequently discovered before the flyby of the Voyager 1 probe in 1979.
Infrared image of Jupiter taken by theESO's Very Large Telescope.
In 1932, Rupert Wildt identified absorption bands of ammonia and methane in the spectra of Jupiter.[79]
Three long-lived anticyclonic features termed white ovals were observed in 1938. For several decades they remained as separate features in the atmosphere, sometimes approaching each other but never merging. Finally, two of the ovals merged in 1998, then absorbed the third in 2000, becoming Oval BA.[80]

Radiotelescope research

In 1955, Bernard Burke and Kenneth Franklin detected bursts of radio signals coming from Jupiter at 22.2 MHz.[29] The period of these bursts matched the rotation of the planet, and they were also able to use this information to refine the rotation rate. Radio bursts from Jupiter were found to come in two forms: long bursts (or L-bursts) lasting up to several seconds, and short bursts (or S-bursts) that had a duration of less than a hundredth of a second.[81]
Scientists discovered that there were three forms of radio signals transmitted from Jupiter.
  • Decametric radio bursts (with a wavelength of tens of meters) vary with the rotation of Jupiter, and are influenced by interaction of Io with Jupiter's magnetic field.[82]
  • Decimetric radio emission (with wavelengths measured in centimeters) was first observed by Frank Drake and Hein Hvatum in 1959.[29]The origin of this signal was from a torus-shaped belt around Jupiter's equator. This signal is caused by cyclotron radiation from electrons that are accelerated in Jupiter's magnetic field.[83]
  • Thermal radiation is produced by heat in the atmosphere of Jupiter.[29]

Exploration with space probes

Since 1973 a number of automated spacecraft have visited Jupiter, most notably the Pioneer 10 space probe, the first spacecraft to get close enough to Jupiter to send back revelations about the properties and phenomena of the solar system's largest planet.[84][85] Flights to other planets within the Solar System are accomplished at a cost in energy, which is described by the net change in velocity of the spacecraft, ordelta-v. Entering a Hohmann transfer orbit from Earth to Jupiter from low earth orbit requires a delta-v of 6.3 km/s[86] which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit.[87] Fortunately, gravity assists through planetary flybys can be used to reduce the energy required to reach Jupiter, albeit at the cost of a significantly longer flight duration.[88]

Flyby missions

Flyby missions
SpacecraftClosest
approach
Distance
Pioneer 10December 3, 1973130,000 km
Pioneer 11December 4, 197434,000 km
Voyager 1March 5, 1979349,000 km
Voyager 2July 9, 1979570,000 km
UlyssesFebruary 8, 1992[89]408,894 km
February 4, 2004[89]120,000,000 km
CassiniDecember 30, 200010,000,000 km
New HorizonsFebruary 28, 20072,304,535 km
Voyager 1 took this photo of the planet Jupiter on January 24, 1979, while still more than 25 million mi (40 million km) away.
Beginning in 1973, several spacecraft have performed planetary flyby maneuvers that brought them within observation range of Jupiter. The Pioneer missions obtained the first close-up images of Jupiter's atmosphere and several of its moons. They discovered that the radiation fields near the planet were much stronger than expected, but both spacecraft managed to survive in that environment. The trajectories of these spacecraft were used to refine the mass estimates of the Jovian system. Occultations of the radio signals by the planet resulted in better measurements of Jupiter's diameter and the amount of polar flattening.[21][90]
Six years later, the Voyager missions vastly improved the understanding of theGalilean moons and discovered Jupiter's rings. They also confirmed that the Great Red Spot was anticyclonic. Comparison of images showed that the Red Spot had changed hue since the Pioneer missions, turning from orange to dark brown. A torus of ionized atoms was discovered along Io's orbital path, and volcanoes were found on the moon's surface, some in the process of erupting. As the spacecraft passed behind the planet, it observed flashes of lightning in the night side atmosphere.[15][21]
The next mission to encounter Jupiter, the Ulysses solar probe, performed a flyby maneuver to attain a polar orbit around the Sun. During this pass the spacecraft conducted studies on Jupiter's magnetosphere. Since Ulysses has no cameras, no images were taken. A second flyby six years later was at a much greater distance.[89]
In 2000, the Cassini probe, en route to Saturn, flew by Jupiter and provided some of the highest-resolution images ever made of the planet. On December 19, 2000, the spacecraft captured an image of the moon Himalia, but the resolution was too low to show surface details.[91]
The New Horizons probe, en route to Pluto, flew by Jupiter for gravity assist. Its closest approach was on February 28, 2007.[92] The probe's cameras measured plasma output from volcanoes on Io and studied all four Galilean moons in detail, as well as making long-distance observations of the outer moons Himalia and Elara.[93] Imaging of the Jovian system began September 4, 2006.[94][95]

Galileo mission

Jupiter as seen by the space probeCassini.
So far the only spacecraft to orbit Jupiter is the Galileoorbiter, which went into orbit around Jupiter on December 7, 1995. It orbited the planet for over seven years, conducting multiple flybys of all the Galilean moons and Amalthea. The spacecraft also witnessed the impact of Comet Shoemaker-Levy 9 as it approached Jupiter in 1994, giving a unique vantage point for the event. While the information gained about the Jovian system from Galileo was extensive, its originally designed capacity was limited by the failed deployment of its high-gain radio transmitting antenna.[96]
An atmospheric probe was released from the spacecraft in July 1995, entering the planet's atmosphere on December 7. It parachuted through 150 km of the atmosphere, collected data for 57.6 minutes, and was crushed by the pressure to which it was subjected by that time (about 22 times Earth normal, at a temperature of 153 °C).[97] It would have melted thereafter, and possibly vaporized. The Galileo orbiter itself experienced a more rapid version of the same fate when it was deliberately steered into the planet on September 21, 2003, at a speed of over 50 km/s, to avoid any possibility of it crashing into and possibly contaminating Europa—a moon which has been hypothesized to have the possibility of harboring life.[96]

Future probes and canceled missions

NASA currently has a mission underway to study Jupiter in detail from a polar orbit. Named Juno, the spacecraft launched in August 2011, and will arrive in late 2016.[98]
The Europa Jupiter System Mission (EJSM) is a joint NASA/ESA proposal for exploration of Jupiter and its moons. In February 2009 it was announced that ESA/NASA had given this mission priority ahead of the Titan Saturn System Mission.[99][100] ESA's contribution will still face funding competition from other ESA projects.[101] Launch date will be around 2020. EJSM consists of the NASA-led Jupiter Europa Orbiter, and the ESA-led Jupiter Ganymede Orbiter.[102]
Because of the possibility of subsurface liquid oceans on Jupiter's moons Europa, Ganymede and Callisto, there has been great interest in studying the icy moons in detail. Funding difficulties have delayed progress. NASA's JIMO (Jupiter Icy Moons Orbiter) was cancelled in 2005.[103] A European Jovian Europa Orbiter mission was also studied.[104] These missions were superseded by the Europa Jupiter System Mission (EJSM).

Moons

Jupiter with the Galilean moons
Jupiter has 64 named natural satellites. Of these, 47 are less than 10 kilometres in diameter and have only been discovered since 1975. The four largest moons, known as the "Galilean moons", are Io, Europa, Ganymede and Callisto.

Galilean moons

The Galilean moons. From left to right, in order of increasing distance from Jupiter: IoEuropaGanymedeCallisto.
The orbits of Io, Europa, and Ganymede, some of the largest satellites in the Solar System, form a pattern known as a Laplace resonance; for every four orbits that Io makes around Jupiter, Europa makes exactly two orbits and Ganymede makes exactly one. This resonance causes thegravitational effects of the three large moons to distort their orbits into elliptical shapes, since each moon receives an extra tug from its neighbors at the same point in every orbit it makes. The tidal force from Jupiter, on the other hand, works to circularize their orbits.[105]
The eccentricity of their orbits causes regular flexing of the three moons' shapes, with Jupiter's gravity stretching them out as they approach it and allowing them to spring back to more spherical shapes as they swing away. This tidal flexing heats the moons' interiors by friction. This is seen most dramatically in the extraordinary volcanic activity of innermost Io (which is subject to the strongest tidal forces), and to a lesser degree in the geological youth of Europa's surface(indicating recent resurfacing of the moon's exterior).
The Galilean moons, compared to Earth's Moon
NameIPADiameterMassOrbital radiusOrbital period
km %kg %km %days %
Ioˈaɪ.oʊ36431058.9×1022120421,7001101.777
Europajʊˈroʊpə3122904.8×102265671,0341753.5513
Ganymedeˈɡænimiːd526215014.8×10222001,070,4122807.1526
Callistokəˈlɪstoʊ482114010.8×10221501,882,70949016.6961

Classification of moons

Jupiter's moon Europa.
Before the discoveries of the Voyager missions, Jupiter's moons were arranged neatly into four groups of four, based on commonality of their orbital elements. Since then, the large number of new small outer moons has complicated this picture. There are now thought to be six main groups, although some are more distinct than others.
A basic sub-division is a grouping of the eight inner regular moons, which have nearly circular orbits near the plane of Jupiter's equator and are believed to have formed with Jupiter. The remainder of the moons consist of an unknown number of small irregular moons with elliptical and inclined orbits, which are believed to be captured asteroids or fragments of captured asteroids. Irregular moons that belong to a group share similar orbital elements and thus may have a common origin, perhaps as a larger moon or captured body that broke up.[106][107]
Regular moons
Inner groupThe inner group of four small moons all have diameters of less than 200 km, orbit at radii less than 200,000 km, and have orbital inclinations of less than half a degree.
Galilean moons[108]These four moons, discovered by Galileo Galilei and by Simon Marius in parallel, orbit between 400,000 and 2,000,000 km, and include some of the largest moons in the Solar System.
Irregular moons
ThemistoThis is a single moon belonging to a group of its own, orbiting halfway between the Galilean moons and the Himalia group.
Himalia groupA tightly clustered group of moons with orbits around 11,000,000–12,000,000 km from Jupiter.
CarpoAnother isolated case; at the inner edge of the Ananke group, it orbits Jupiter in prograde direction.
Ananke groupThis retrograde orbit group has rather indistinct borders, averaging 21,276,000 km from Jupiter with an average inclination of 149 degrees.
Carme groupA fairly distinct retrograde group that averages 23,404,000 km from Jupiter with an average inclination of 165 degrees.
Pasiphaë groupA dispersed and only vaguely distinct retrograde group that covers all the outermost moons.

Interaction with the Solar System

Along with the Sun, the gravitational influence of Jupiter has helped shape the Solar System. The orbits of most of the system's planets lie closer to Jupiter's orbital plane than the Sun's equatorial plane (Mercury is the only planet that is closer to the Sun's equator in orbital tilt), theKirkwood gaps in the asteroid belt are mostly caused by Jupiter, and the planet may have been responsible for the Late Heavy Bombardmentof the inner Solar System's history.[109]
This diagram shows the Trojan asteroidsin Jupiter's orbit, as well as the main asteroid belt.
Along with its moons, Jupiter's gravitational field controls numerous asteroids that have settled into the regions of the Lagrangian points preceding and following Jupiter in its orbit around the sun. These are known as the Trojan asteroids, and are divided into Greek and Trojan "camps" to commemorate the Iliad. The first of these, 588 Achilles, was discovered by Max Wolf in 1906; since then more than two thousand have been discovered.[110] The largest is 624 Hektor.
Most short-period comets belong to the Jupiter family—defined as comets with semi-major axessmaller than Jupiter's. Jupiter family comets are believed to form in the Kuiper belt outside the orbit of Neptune. During close encounters with Jupiter their orbits are perturbed into a smaller period and then circularized by regular gravitational interaction with the Sun and Jupiter.[111]

Impacts

Hubble image taken on July 23 showing a blemish of about 5,000 miles long left by the2009 Jupiter impact.[112]
Jupiter has been called the Solar System's vacuum cleaner,[113] because of its immense gravity well and location near the inner Solar System. It receives the most frequent comet impacts of the Solar System's planets.[114] It was thought that the planet served to partially shield the inner system from cometary bombardment. Recent computer simulations suggest that Jupiter does not cause a net decrease in the number of comets that pass through the inner Solar System, as its gravity perturbs their orbits inward in roughly the same numbers that it accretes or ejects them.[115] This topic remains controversial among astronomers, as some believe it draws comets towards Earth from the Kuiper belt while others believe that Jupiter protects Earth from the allegedOort cloud.[116]
A 1997 survey of historical astronomical drawings suggested that the astronomer Cassini may have recorded an impact scar in 1690. The survey determined eight other candidate observations had low or no possibilities of an impact.[117] During the period July 16, 1994, to July 22, 1994, over 20 fragments from the comet Shoemaker–Levy 9 (SL9, formally designated D/1993 F2) collided with Jupiter's southern hemisphere, providing the first direct observation of a collision between two Solar System objects. This impact provided useful data on the composition of Jupiter's atmosphere.[118][119]
On July 19, 2009, an impact site was discovered at approximately 216 degrees longitude in System 2.[120][121] This impact left behind a black spot in Jupiter's atmosphere, similar in size to Oval BA. Infrared observation showed a bright spot where the impact took place, meaning the impact warmed up the lower atmosphere in the area near Jupiter's south pole.[122]
Another impact event, smaller than the previous observed impacts, was detected on June 3, 2010, by Anthony Wesley, an amateur astronomer in Australia, and was later discovered to have been captured on video by another amateur astronomer in the Philippines.[123]

Possibility of life

In 1953, the Miller–Urey experiment demonstrated that a combination of lightning and the chemical compounds that existed in the atmosphere of a primordial Earth could form organic compounds (including amino acids) that could serve as the building blocks of life. The simulated atmosphere included water, methane, ammonia and molecular hydrogen; all molecules still found in the atmosphere of Jupiter. The atmosphere of Jupiter has a strong vertical air circulation, which would carry these compounds down into the lower regions. The higher temperatures within the interior of the atmosphere breaks down these chemicals, which would hinder the formation of Earth-like life.[124]
It is considered highly unlikely that there is any Earth-like life on Jupiter, as there is only a small amount of water in the atmosphere and any possible solid surface deep within Jupiter would be under extraordinary pressures. In 1976, before the Voyager missions, it was hypothesized that ammonia or water-based life could evolve in Jupiter's upper atmosphere. This hypothesis is based on the ecology of terrestrial seas which have simple photosynthetic plankton at the top level, fish at lower levels feeding on these creatures, and marine predators which hunt the fish.[125][126]
The possible presence of underground oceans on some of Jupiter's moons has led to speculation that the presence of life is more likely there.

Ancient mythology

The planet Jupiter has been known since ancient times. It is visible to the naked eye in the night sky and can occasionally be seen in the daytime when the sun is low.[127] To the Babylonians, this object represented their god Marduk. They used the roughly 12-year orbit of this planet along the ecliptic to define the constellations of their zodiac.[21][128]
The Romans named it after Jupiter (LatinIuppiter, Iūpiter) (also called Jove), the principal god of Roman mythology, whose name comes from the Proto-Indo-European vocative compound *Dyēu-pəter (nominative: *Dyēus-pətēr, meaning "O Father Sky-God", or "O Father Day-God").[129][130]
The astronomical symbol for the planet, ♃, is a stylized representation of the god's lightning bolt. The original Greek deity, Zeus, adopted by Romans, supplies the root zeno-, used to form some Jupiter-related words, such as zenographic.[131]
Jovian is the adjectival form of Jupiter. The older adjectival form jovial, employed by astrologers in the Middle Ages, has come to mean "happy" or "merry," moods ascribed to Jupiter's astrological influence.[132]
The Chinese, Korean and Japanese referred to the planet as the wood starChinese木星pinyinmùxīng, based on the Chinese Five Elements.[133] The Greeks called it Φαέθων, Phaethon, "blazing." In Vedic Astrology, Hindu astrologers named the planet after Brihaspati, the religious teacher of the gods, and often called it "Guru", which literally means the "Heavy One."[134] In the English languageThursday is derived from "Thor's day", with Thor associated with the planet Jupiter in Germanic mythology.[135]

Saturn

Saturn  Astronomical symbol for Saturn
The planet Saturn during equinox
Saturn imaged by the Cassini Orbiter
Designations
PronunciationListeni/ˈsætərn/[1]
AdjectiveSaturnian, Cronian
Epoch J2000.0
Aphelion1,513,325,783 km
10.115 958 04 AU
Perihelion1,353,572,956 km
9.048 076 35 AU
Semi-major axis1,433,449,370 km
9.582 017 20 AU
Eccentricity0.055 723 219
Orbital period10,759.22 days
29.4571 yr
24,491.07 Saturn solar days[4]
Synodic period378.09 days[5]
Average orbital speed9.69 km/s[5]
Mean anomaly320.346 750°
Inclination2.485 240° to Ecliptic
5.51° to Sun’s equator
0.93° to invariable plane[6]
Longitude of ascending node113.642 811°
Argument of perihelion336.013 862°
Satellites~ 200 observed (61 with secure orbits)
Physical characteristics
Equatorial radius60,268 ± 4 km[7][8]
9.4492 Earths
Polar radius54,364 ± 10 km[7][8]
8.5521 Earths
Flattening0.097 96 ± 0.000 18
Surface area4.27×1010 km²[8][9]
83.703 Earths
Volume8.2713×1014 km3[5][8]
763.59 Earths
Mass5.6846×1026 kg[5]
95.152 Earths
Mean density0.687 g/cm3[5][8]
(less than water)
Equatorial surface gravity10.44 m/s²[5][8]
1.065 g
Escape velocity35.5 km/s[5][8]
Sidereal rotation
period
10.57 hours[10]
(10 hr 34 min)
Equatorial rotation velocity9.87 km/s[8]
35,500 km/h
Axial tilt26.73°[5]
North poleright ascension2h 42m 21s
40.589°[7]
North poledeclination83.537°[7]
Albedo0.342 (Bond)
0.47 (geometric)[5]
Surface temp.
   1 bar level
   0.1 bar
minmeanmax
134 K[5]
84 K[5]
Apparent magnitude+1.47 to −0.24[11]
Angular diameter14.5"–20.1"[5]
(excludes rings)
Atmosphere[5]
Scale height59.5 km
Composition
~96%hydrogen (H2)
~3%helium
~0.4%methane
~0.01%ammonia
~0.01%hydrogen deuteride(HD)
0.000 7%ethane
Ices:
ammonia
water
ammonium hydrosulfide(NH4SH)
Saturn is the sixth planet from the Sun and the second largest planet in the Solar System, after Jupiter. Saturn is named after the Roman god Saturn, equated to theGreek Cronus (the Titan father of Zeus), the Babylonian Ninurta and the Hindu Shani. Saturn's astronomical symbol () represents the Roman god's sickle.
Saturn, along with Jupiter, Uranus and Neptune, is a gas giant. Together, these four planets are sometimes referred to as the Jovian planets, meaning "Jupiter-like". Saturn has an average radius about 9 times larger than the Earth's.[12][13] While only 1/8 the average density of Earth, due to its larger volume, Saturn's mass is just over 95 times greater than Earth's.[14][15][16]
Because of Saturn's large mass and resulting gravitation, the conditions produced on Saturn are extreme if compared to Earth. The interior of Saturn is probably composed of a core of iron, nickel, silicon and oxygen compounds, surrounded by a deep layer ofmetallic hydrogen, an intermediate layer of liquid hydrogen and liquid helium and finally, an outer gaseous layer.[17] Electrical current within the metallic-hydrogen layer is thought to give rise to Saturn's planetary magnetic field, which is slightly weaker than Earth's and approximately one-twentieth the strength of Jupiter's.[18] The outeratmosphere is generally bland in appearance, although long-lived features can appear.Wind speeds on Saturn can reach 1,800 km/h, significantly faster than those on Jupiter.
Saturn has a ring system that is divided into nine continuous and three discontinuous main rings (arcs), consisting mostly of ice particles with a smaller amount of rocky debris and dust. Sixty-two[19] known moons orbit the planet; fifty-three are officially named. This does not include the hundreds of "moonlets" within the rings. Titan, Saturn's largest and the Solar System's second largest moon (after Jupiter's Ganymede), is larger than the planet Mercury and is the only moon in the Solar System to possess a significant atmosphere.[20]

Due to a combination of its lower density, rapid rotation and fluid state, Saturn is anoblate spheroid; that is, it is flattened at the poles and bulges at the equator. Its equatorial and polar radii differ by almost 10%—60,268 km versus 54,364 km.[5] The other gas planets are also oblate, but to a lesser extent. Saturn is the only planet of the Solar System that is less dense than water (about 30% less).[21] Although Saturn's coreis considerably denser than water, the average specific density of the planet is 0.69 g/cm3 due to the gaseous atmosphere. Saturn is only 95 Earth masses,[5]compared to Jupiter, which is 318 times the mass of the Earth[22] but only about 20% larger than Saturn.[23]Physical characteristics

Internal structure

Though there is no direct information about Saturn's internal structure, it is thought that its interior is similar to that of Jupiter, having a small rocky core surrounded mostly byhydrogen and helium. The rocky core is similar in composition to the Earth, but more dense. This is surrounded by a thicker liquid metallic hydrogen layer, followed by a liquid hydrogen/helium layer and a gaseous atmosphere in the outermost 1000 km.[24] Traces of various volatiles are also present. The core region is estimated to be about 9–22 times the mass of the Earth.[25] Saturn has a very hot interior, reaching 11,700 °C at the core, and it radiates 2.5 times more energy into space than it receives from the Sun. Most of this extra energy is generated by the Kelvin–Helmholtz mechanism (slow gravitational compression), but this alone may not be sufficient to explain Saturn's heat production. It is proposed that an additional mechanism might be at play whereby Saturn generates some of its heat through the "raining out" of droplets of helium deep in its interior, thus releasing heat by friction as they fall down through the lighter hydrogen.[26] The gases which Saturn is mostly made of change to liquid in Saturn's internal structure, but the change is very gradual.[27] The interior is estimated to be about 25,000 km across.[28]

Atmosphere

The outer atmosphere of Saturn consists of 96.3% molecular hydrogen and 3.25% helium.[29] Trace amounts of ammoniaacetyleneethanephosphine and methane have also been detected.[30][31] The upper clouds on Saturn are composed of ammonia crystals, while the lower level clouds appear to be composed of either ammonium hydrosulfide (NH4SH) or water.[32] The atmosphere of Saturn is significantly deficient in helium relative to the abundance of the elements in the Sun.
The quantity of elements heavier than helium are not known precisely, but the proportions are assumed to match the primordial abundances from the formation of the Solar System. The total mass of these elements is estimated to be 19–31 times the mass of the Earth, with a significant fraction located in Saturn's core region.[33]

Cloud layers

Saturn's atmosphere exhibits a banded pattern similar to Jupiter's (the nomenclature is the same), but Saturn's bands are much fainter and are also much wider near the equator. At depth, extending for 10 km and with a temperature of −23 °C, is a layer made up of water ice. Above this layer is probably a layer of ammonium hydrosulfide ice, which extends for another 50 km and is approximately −93 °C. Eighty kilometers above that layer are ammonia ice clouds, where the temperatures are roughly −153 °C. Near the top of the atmosphere, extending for some 200 km to 270 km above the visible ammonia clouds, are gaseous hydrogen and helium.[34] Saturn's winds are easily among the Solar System's fastest. Voyager data indicate peak easterly winds of 500 m/s (1800 km/h).[35] Saturn's finer cloud patterns were not observed until the Voyager flybys. Since then, Earth-based telescopy has improved to the point where regular observations can be made.
Saturn's usually bland atmosphere occasionally exhibits long-lived ovals and other features common on Jupiter. In 1990 the Hubble Space Telescope observed an enormous white cloud near Saturn's equator which was not present during the Voyager encounters and in 1994, another, smaller storm was observed. The 1990 storm was an example of a Great White Spot, a unique but short-lived phenomenon which occurs once every Saturnian year, roughly every 30 Earth years, around the time of the northern hemisphere's summer solstice.[36] Previous Great White Spots were observed in 1876, 1903, 1933 and 1960, with the 1933 storm being the most famous. If the periodicity is maintained, another storm will occur in about 2020.[37]
In recent images from the Cassini spacecraft, Saturn's northern hemisphere appears a bright blue, similar to Uranus, as can be seen in the image below. This blue color cannot currently be observed from Earth, because Saturn's rings are currently blocking its northern hemisphere. The color is most likely caused by Rayleigh scattering.[38]
Infrared imaging has shown that Saturn's south pole has a warm polar vortex, the only example of such a phenomenon known to date in the Solar System.[39] Whereas temperatures on Saturn are normally −185 °C, temperatures on the vortex often reach as high as −122 °C, believed to be the warmest spot on Saturn.[39]

North pole hexagonal cloud pattern

North polar hexagonal cloud feature, discovered by Voyager 1 and confirmed in 2006 by Cassini.
A persisting hexagonal wave pattern around the north polar vortex in the atmosphere at about 78°N was first noted in the Voyager images.[41][42][43][44][45][46] Unlike the north pole, HST imaging of the south polar region indicates the presence of a jet stream, but no strong polar vortex nor any hexagonal standing wave.[47] NASA reported in November 2006 that the Cassini spacecraft observed a "hurricane-like" storm locked to the south pole that had a clearly definedeyewall.[48][49] This observation is particularly notable because eyewall clouds had not previously been seen on any planet other than Earth. For example, images from the Galileo spacecraft did not show an eyewall in the Great Red Spot of Jupiter.[50]
The straight sides of the northern polar hexagon are each approximately 13,800 km (8,600 mi) long, making them larger than the diameter of the Earth.[46] The entire structure rotates with a period of 10h 39m 24s, the same period as that of the planet's radio emissions, which is assumed to be equal to the period of rotation of Saturn's interior. The hexagonal feature does not shift in longitude like the other clouds in the visible atmosphere.
The pattern's origin is a matter of much speculation. Most astronomers seem to think it was caused by some standing-wave pattern in the atmosphere; but the hexagon might be a novel aurora. Polygonal shapes have been replicated in spinning buckets of fluid in a laboratory.[51]

Magnetosphere

Photo of Saturn by Hubble showing both polar aurorae.
Saturn has an intrinsic magnetic field that has a simple, symmetric shape—a magnetic dipole. Its strength at the equator—0.2 gauss (20 µT)—is approximately one twentieth than that of the field around Jupiter and slightly weaker than Earth's magnetic field.[18] As a result Saturn's magnetosphere is much smaller than Jupiter's and extends slightly beyond the orbit of Titan.[52]Most probably, the magnetic field is generated similarly to that of Jupiter—by currents in the metallic-hydrogen layer, which is called a metallic-hydrogen dynamo.[52] Similarly to those of other planets, this magnetosphere is efficient at deflecting the solar wind particles from the Sun. The moon Titan orbits within the outer part of Saturn's magnetosphere and contributes plasma from theionized particles in Titan's outer atmosphere.[18] When Voyager 2 entered the magnetosphere, thesolar wind pressure was high and the magnetosphere extended only 19 Saturn radii, or 1.1 million km (712,000 mi),[53] although it enlarged within several hours, and remained so for about three days.[54] Saturn's magnetosphere, like Earth's, produces aurorae.[55]

Orbit and rotation

The average distance between Saturn and the Sun is over 1,400,000,000 km (9AU). It takes Saturn 10,759 Earth days (or about 29½ years), to finish one revolution around the Sun.
The average distance between Saturn and the Sun is over 1,400,000,000 km (9 AU). With an average orbital speed of 9.69 km/s,[5] it takes Saturn 10,759 Earth days (or about 29½ years),[56]to finish one revolution around the Sun.[5] The elliptical orbit of Saturn is inclined 2.48° relative to the orbital plane of the Earth.[5] Because of an eccentricity of 0.056, the distance between Saturn and the Sun varies by approximately 155,000,000 km between perihelion and aphelion,[5] which are the nearest and most distant points of the planet along its orbital path, respectively.
The visible features on Saturn rotate at different rates depending on latitude and multiple rotation periods have been assigned to various regions (as in Jupiter's case): System I has a period of 10 h 14 min 00 s (844.3°/d) and encompasses the Equatorial Zone, which extends from the northern edge of the South Equatorial Belt to the southern edge of the North Equatorial Belt. All other Saturnian latitudes have been assigned a rotation period of 10 h 39 min 24 s (810.76°/d), which isSystem IISystem III, based on radio emissions from the planet in the period of the Voyager flybys, has a period of 10 h 39 min 22.4 s (810.8°/d); because it is very close to System II, it has largely superseded it.
A precise value for the rotation period of the interior remains elusive. While approaching Saturn in 2004, the Cassini spacecraft found that the radio rotation period of Saturn had increased appreciably, to approximately 10 h 45 m 45 s (± 36 s).[57][58] The cause of the change is unknown—it was thought to be due to a movement of the radio source to a different latitude inside Saturn, with a different rotational period, rather than because of a change in Saturn's rotation.
Later, in March 2007, it was found that the rotation of the radio emissions did not trace the rotation of the planet, but rather is produced by convection of the plasma disc, which is dependent also on other factors besides the planet's rotation. It was reported that the variance in measured rotation periods may be caused by geyser activity on Saturn's moon Enceladus. The water vapor emitted into Saturn's orbit by this activity becomes charged and "weighs down" Saturn's magnetic field, slowing its rotation slightly relative to the rotation of the planet. At the time it was stated that there is no currently known method of determining the rotation rate of Saturn's core.[59][60][61]
The latest estimate of Saturn's rotation based on a compilation of various measurements from the Cassini, Voyager and Pioneer probes was reported in September 2007 is 10 hours, 32 minutes, 35 seconds.[62]

Planetary rings

The rings of Saturn (imaged here byCassini in 2007) are the most conspicuous in the Solar System.[24]
Saturn is probably best known for its system of planetary rings, which makes it the most visually remarkable object in the solar system.[24] The rings extend from 6,630 km to 120,700 km above Saturn's equator, average approximately 20 meters in thickness and are composed of 93% water ice with a smattering of tholin impurities and 7% amorphous carbon.[63] The particles that make up the rings range in size from specks of dust up to 10 m.[64] There are two main theories regarding the origin of the rings. One theory is that the rings are remnants of a destroyed moon of Saturn. The second theory is that the rings are left over from the original nebular material from which Saturn formed. Some ice in the central rings comes from the moon Enceladus' ice volcanoes.[65]
Beyond the main rings at a distance of 12 million km from the planet is the sparse Phoebe ring, which is tilted at an angle of 27° to the other rings and, like Phoebe, orbits in retrogradefashion.[66] Some of the moons of Saturn, including Pan and Prometheus, act as shepherd moons to keep the planetary rings stable and prevent them from escaping.[67] Pan and Atlas cause weak, linear density waves in Saturn's rings that have yielded more reliable calculations of their masses.[68]
The age of these planetary rings is probably hundreds of millions of years old[69] (in contrast to previous thoughts that the rings formed alongside the planet when it formed billions of years ago)[70] and their fate include spiraling inward towards the planet, or the boulders forming the rings colliding with each other and disappearing.

Natural satellites

A montage of Saturn and its principalmoons (DioneTethysMimasEnceladus,Rhea and TitanIapetus not shown). This famous image was created from photographs taken in November 1980 by theVoyager 1 spacecraft.
Saturn has at least 62 moons, 53 of which have formal names.[71] Titan, the largest, comprises more than 90% of the mass in orbit around Saturn, including the rings.[72] Saturn's second largest moon, Rhea, may have a tenuous ring system of its own,[73] along with a tenuousatmosphere.[74][75][76][77] Many of the other moons are very small: 34 are less than 10 km in diameter and another 14 less than 50 km.[78] Traditionally, most of Saturn's moons have been named after Titans of Greek mythology. Titan is the only satellite in the Solar System with a majoratmosphere[79][80] in which a complex organic chemistry occurs. It is also the only satellite withhydrocarbon lakes.[81][82]
Saturn's moon Enceladus has often been regarded as a potential base for microbial life.[83][84][85][86] Evidence of this life includes the satellite's salt-rich particles having an "ocean-like" composition that indicates most of Enceladus's expelled ice comes from the evaporation of liquid salt water.[87][88][89]

History of exploration

There are three main phases of observation and exploration of Saturn. The first era was ancient observations (such as with the naked eye), before the invention of the modern telescopes. Starting in the 17th century progressively more advanced telescopic observations from earth have been made. The other type is visitation by spacecraft, either by orbiting or flyby. In the 21st century observations continue from the earth (or earth orbiting observatories) and from the Cassini orbiter at Saturn.

Ancient observations

Saturn has been known since prehistoric times.[90] In ancient times, it was the most distant of the five known planets in the solar system (excluding Earth) and thus a major character in various mythologies. Babylonian astronomers systematically observed and recorded the movements of Saturn.[91] In ancient Roman mythology, the god Saturnus, from which the planet takes its name, was the god of the agricultural and harvest sector.[92] The Romans considered Saturnus the equivalent of the Greek god Cronus.[92] The Greeks had made the outermost planet sacred to Cronus,[93] and the Romans followed suit.
Ptolemy, a Greek living in Alexandria,[94] observed an opposition of Saturn, which was the basis for his determination of the elements of its orbit.[95] In Hindu astrology, there are nine astrological objects, known as Navagrahas. Saturn, one of them, is known as "Shani", judges everyone based on the good and bad deeds performed in life.[92] In the 5th century CE, the Indian astronomical text Surya Siddhantaestimated the diameter of Saturn as 73,882 miles, an error of less than 1% from the currently accepted value of 74,580 miles, for which there exist several possible explanations.[96] Ancient Chinese and Japanese culture designated the planet Saturn as the earth star (土星). This was based on Five Elements which were traditionally used to classify natural elements.[97]
In ancient Hebrew, Saturn is called 'Shabbathai'.[98] Its angel is Cassiel. Its intelligence or beneficial spirit is Agiel (layga) and its spirit (darker aspect) is Zazel (lzaz). In Ottoman TurkishUrdu and Malay, its name is 'Zuhal', derived from Arabic زحل.

European observations (17th–19th centuries)

Robert Hooke noted the shadows (a and b) cast by both the globe and the rings on each other in this drawing of Saturn in 1666.
Saturn's rings require at least a 15 mm diameter telescope[99] to resolve and thus were not known to exist until Galileo first saw them in 1610.[100][101] He thought of them as two moons on Saturn's sides.[102][103] It was not until Christian Huygens used greater telescopic magnification that this notion was refuted. Huygens also discovered Saturn's moon Titan. Some time later, Giovanni Domenico Cassini discovered four other moons: IapetusRheaTethys and Dione. In 1675, Cassini also discovered the gap now known as the Cassini Division.[104]
No further discoveries of significance were made until 1789 when William Herschel discovered two further moons, Mimas and Enceladus. The irregularly shaped satellite Hyperion, which has aresonance with Titan, was discovered in 1848 by a British team.
In 1899 William Henry Pickering discovered Phoebe, a highly irregular satellite that does not rotate synchronously with Saturn as the larger moons do. Phoebe was the first such satellite found and it takes more than a year to orbit Saturn in a retrograde orbit. During the early 20th century, research on Titan led to the confirmation in 1944 that it had a thick atmosphere—a feature unique among the solar system's moons.

Modern NASA/ESA probes

Pioneer 11 flyby

Saturn was first visited by Pioneer 11 in September 1979. It flew within 20 000 km of the planet's cloud tops. Low resolution images were acquired of the planet and a few of its moons; the resolution of the images was not good enough to discern surface features. The spacecraft also studied the rings; among the discoveries were the thin F-ring and the fact that dark gaps in the rings are bright when viewed towards the Sun, in other words, they are not empty of material. Pioneer 11 also measured the temperature of Titan.[105] The Pioneer images of Saturn were significantly dimmer as the planet and its moons only receive 14.90 W/m^2 (Solar Irradiance) where Jupiter gets around 400 W/m^2[citation needed]. Camera technology would be improved in subsequent missions to the planet.

Voyager flybys

In November 1980, the Voyager 1 probe visited the Saturn system. It sent back the first high-resolution images of the planet, its rings and satellites. Surface features of various moons were seen for the first time. Voyager 1 performed a close flyby of Titan, greatly increasing our knowledge of the atmosphere of the moon. It also proved that Titan's atmosphere is impenetrable in visible wavelengths; so, no surface details were seen. The flyby also changed the spacecraft's trajectory out from the plane of the solar system.[106]
Almost a year later, in August 1981, Voyager 2 continued the study of the Saturn system. More close-up images of Saturn's moons were acquired, as well as evidence of changes in the atmosphere and the rings. Unfortunately, during the flyby, the probe's turnable camera platform stuck for a couple of days and some planned imaging was lost. Saturn's gravity was used to direct the spacecraft's trajectory towards Uranus.[106]
The probes discovered and confirmed several new satellites orbiting near or within the planet's rings. They also discovered the small Maxwell Gap (a gap within the C Ring) and Keeler gap (a 42 km wide gap in the A Ring).

Cassini–Huygens spacecraft

Saturn eclipses the Sun, as seen from the Cassini–Huygens space probe.
On July 1, 2004, the Cassini–Huygens space probe performed the SOI (Saturn Orbit Insertion) maneuver and entered into orbit around Saturn. Before the SOI, Cassini had already studied the system extensively. In June 2004, it had conducted a close flyby of Phoebe, sending back high-resolution images and data.
Cassini's flyby of Saturn's largest moon, Titan, has captured radar images of large lakes and their coastlines with numerous islands and mountains. The orbiter completed two Titan flybys before releasing the Huygens probe on December 25, 2004. Huygens descended onto the surface of Titan on January 14, 2005, sending a flood of data during the atmospheric descent and after the landing. During 2005, Cassini conducted multiple flybys of Titan and icy satellites. Cassini's last Titan flyby started on March 23, 2008.
Since early 2005, scientists have been tracking lightning on Saturn. The power of the lightning is approximately 1000 times that of lightning on Earth.[107]
In 2006, NASA reported that the Cassini probe found evidence of liquid water reservoirs that erupt in geysers on Saturn's moon Enceladus. Images had also shown particles of water in its liquid state emitted by icy jets and towering plumes. According to Dr. Andrew Ingersoll, California Institute of Technology, "Other moons in the solar system have liquid-water oceans covered by kilometers of icy crust. What's different here is that pockets of liquid water may be no more than tens of meters below the surface."[108] In May 2011, NASA scientists at an Encedalus Focus Group Conference reported that Enceladus "is emerging as the most habitable spot beyond Earth in the Solar System for life as we know it".[109][110]
Cassini probe photographs have led to other significant discoveries. They have revealed a previously undiscovered planetary ring, outside the brighter main rings of Saturn and inside the G and E rings. The source of this ring is believed to be the crashing of a meteoroid off two of the moons of Saturn.[111] In July 2006, Cassini images provided evidence of hydrocarbon lakes near Titan's north pole, the presence of which were confirmed in January 2007. In March 2007, additional images near Titan's north pole discovered hydrocarbon "seas", the largest of which is almost the size of the Caspian Sea.[112] In October 2006, the probe detected a 8,000 km diameter hurricane with an eyewall at Saturn's South Pole.[113]
From 2004 to November 2, 2009, the probe discovered and confirmed 8 new satellites. Its primary mission ended in 2008 when the spacecraft had completed 74 orbits around the planet. The probe's mission was extended to September 2010 and then extended again to 2017, to study a full period of Saturn's seasons.[114]

Observation

Saturn is the most distant of the five planets easily visible to the naked eye, the other four being MercuryVenusMars and Jupiter (Uranus and occasionally 4 Vesta are visible to the naked eye in very dark skies). It was the last planet known to early astronomers until Uranus was discovered in 1781. Saturn appears to the naked eye in the night sky as a bright, yellowish point of light whose magnitude is usually between +1 and 0 and takes approximately 29½ years to make a complete circuit of the ecliptic against the background constellations of the zodiac. Most people will require optical aid (large binoculars or a telescope) magnifying at least 20× to clearly resolve Saturn's rings.[24][99]
While it is a rewarding target for observation for most of the time it is visible in the sky, Saturn and its rings are best seen when the planet is at or near opposition (the configuration of a planet when it is at an elongation of 180° and thus appears opposite the Sun in the sky). During the opposition of December 17, 2002, Saturn appeared at its brightest due to a favorable orientation of its rings relative to the Earth,[115] even though Saturn was closer to the Earth and Sun in late 2003.[115]

In culture

Saturn in astrology (Saturn symbol.svg) is the ruling planet of Capricorn and, traditionally, Aquarius.
Saturn, the Bringer of Old Age is a movement in Gustav Holst's The Planets.
The Saturn family of rockets were developed by a team of mostly German rocket scientists led by Wernher von Braun to launch heavy payloads to Earth orbit and beyond. Originally proposed as a military satellite launcher, they were adopted as the launch vehicles for theApollo program.
Sega's video game console, the Sega Saturn, is named after the planet and features a ringed planet as its logo.
The day Saturday is named after Saturn, which itself its derived from the Roman god of agricultureSaturn, although it has been argued that Saturday is rather named after the Roman god Saturn also.

1 comment:

Jayant Parkash Is Welcome All world to my blog