The Maya calendar is a system of calendars and almanacs used in the Maya civilization of pre-Columbian
The essentials of the Maya calendric system are based upon a system which had been in common use throughout the region, dating back to at least the 5th century BCE. It shares many aspects with calendars employed by other earlier Mesoamerican civilizations, such as the Zapotec and Olmec, and contemporary or later ones such as the Mixtec and Aztec calendars. Although the Mesoamerican calendar did not originate with the Maya, their subsequent extensions and refinements of it were the most sophisticated. Along with those of the Aztecs, the Maya calendars are the best-documented and most completely understood.
By the Maya mythological tradition, as documented in Colonial Yucatec accounts and reconstructed from Late Classic and Postclassic inscriptions, the deity Itzamna is frequently credited with bringing the knowledge of the calendar system to the ancestral Maya, along with writing in general and other foundational aspects of Maya culture.[1]
- About ending of days is commonly known to scholars as the Tzolkin, or Tzolk'in in the revised orthography of the Academia de las Lenguas Mayas de Guatemala.[2] It is still used today by the Ixil, kek'chi and Quiche in theGuatemalan highlands. The Tzolk'in was combined with a 365-day vague solar year known as the Haab, or Haab year' , to form a synchronized cycle lasting for 52 Haab's, called the Calendar Round. Smaller cycles of 13 days (thetrecena) and 20 days (the veintena) were important components of the Tzolk'in and Haab' cycles, respectively.
A different calendar was used to track longer periods of time, and for the inscription of calendar dates (i.e., identifying when one event occurred in relation to others). This is the Long Count. It is a count of days since a mythological starting-point.[3]According to the correlation between the Long Count and Western calendars accepted by the great majority of Maya researchers (known as the GMT correlation), this starting-point is equivalent to August 11, 3114 BCE in the proleptic Gregorian calendar or 6 September in the Julian calendar (−3113 astronomical). The Goodman-Martinez-Thompson correlation was chosen by John Eric Sydney Thompson in 1935 on the basis of earlier correlations by Joseph Goodman in 1905 (August 11), Juan Martínez Hernández in 1926 (August 12), and Thompson himself in 1927 (August 13).[4][5] By its linear nature, the Long Count was capable of being extended to refer to any date far into the past or future. This calendar involved the use of a positional notation system, in which each position signified an increasing multiple of the number of days. The Maya numeral system was essentially vigesimal (i.e., base-20), and each unit of a given position represented 20 times the unit of the position which preceded it. An important exception was made for the second-order place value, which instead represented 18 × 20, or 360 days, more closely approximating the solar year than would 20 × 20 = 400 days. It should be noted however that the cycles of the Long Count are independent of the solar year.
Many Maya Long Count inscriptions are supplemented by a Lunar Series, which provides information on the lunar phase and position of the Moon in a half-yearly cycle of lunations.
A 584-day Venus cycle was also maintained, which tracked the heliacal risings of Venus as the morning and evening stars. Many events in this cycle were seen as being astrologically inauspicious and baleful, and occasionally warfare was astrologically timed to coincide with stages in this cycle.
Less-prevalent or poorly understood cycles, combinations and calendar progressions were also tracked. An 650-day Count is attested in a few inscriptions. Repeating sets of 9-day (see below "Nine lords of the night")[6] and 13-day intervals associated with different groups of deities, animals, and other significant concepts are also known.
Maya concepts of time
With the development of the place-notational Long Count calendar (believed to have been inherited from other Mesoamerican cultures), the Maya had an elegant system with which events could be recorded in a linear relationship to one another, and also with respect to the calendar ("linear time") itself. In theory, this system could readily be extended to delineate any length of time desired, by simply adding to the number of higher-order place markers used (and thereby generating an ever-increasing sequence of day-multiples, each day in the sequence uniquely identified by its Long Count number). In practice, most Maya Long Count inscriptions confine themselves to noting only the first five coefficients in this system (a b'ak'tun-count), since this was more than adequate to express any historical or current date (20 b'ak'tuns cover 7,885 solar years). Even so, example inscriptions exist which noted or implied lengthier sequences, indicating that the Maya well understood a linear (past-present-future) conception of time.
However, and in common with other Mesoamerican societies, the repetition of the various calendric cycles, the natural cycles of observable phenomena, and the recurrence and renewal of death-rebirth imagery in their mythological traditions were important influences upon Maya societies. This conceptual view, in which the "cyclical nature" of time is highlighted, was a pre-eminent one, and many rituals were concerned with the completion and re-occurrences of various cycles. As the particular calendric configurations were once again repeated, so too were the "supernatural" influences with which they were associated. Thus it was held that particular calendar configurations had a specific "character" to them, which would influence events on days exhibiting that configuration. Divinations could then be made from the auguries associated with a certain configuration, since events taking place on some future date would be subject to the same influences as its corresponding previous cycle dates. Events and ceremonies would be timed to coincide with auspicious dates, and avoid inauspicious ones.[7]
The completion of significant calendar cycles ("period endings"), such as a k'atun-cycle, were often marked by the erection and dedication of specific monuments (mostly stela inscriptions, but sometimes twin-pyramid complexes such as those in Tikal and Yaxha), commemorating the completion, accompanied by dedicatory ceremonies.
A cyclical interpretation is also noted in Maya creation accounts, in which the present world and the humans in it were preceded by other worlds (one to five others, depending on the tradition) which were fashioned in various forms by the gods, but subsequently destroyed. The present world also had a tenuous existence, requiring the supplication and offerings of periodic sacrifice to maintain the balance of continuing existence. Similar themes are found in the creation accounts of other Mesoamerican societies.[8]
However, and in common with other Mesoamerican societies, the repetition of the various calendric cycles, the natural cycles of observable phenomena, and the recurrence and renewal of death-rebirth imagery in their mythological traditions were important influences upon Maya societies. This conceptual view, in which the "cyclical nature" of time is highlighted, was a pre-eminent one, and many rituals were concerned with the completion and re-occurrences of various cycles. As the particular calendric configurations were once again repeated, so too were the "supernatural" influences with which they were associated. Thus it was held that particular calendar configurations had a specific "character" to them, which would influence events on days exhibiting that configuration. Divinations could then be made from the auguries associated with a certain configuration, since events taking place on some future date would be subject to the same influences as its corresponding previous cycle dates. Events and ceremonies would be timed to coincide with auspicious dates, and avoid inauspicious ones.[7]
The completion of significant calendar cycles ("period endings"), such as a k'atun-cycle, were often marked by the erection and dedication of specific monuments (mostly stela inscriptions, but sometimes twin-pyramid complexes such as those in Tikal and Yaxha), commemorating the completion, accompanied by dedicatory ceremonies.
A cyclical interpretation is also noted in Maya creation accounts, in which the present world and the humans in it were preceded by other worlds (one to five others, depending on the tradition) which were fashioned in various forms by the gods, but subsequently destroyed. The present world also had a tenuous existence, requiring the supplication and offerings of periodic sacrifice to maintain the balance of continuing existence. Similar themes are found in the creation accounts of other Mesoamerican societies.[8]
Some systems started the count with 1 Imix', followed by 2 Ik', 3 Ak'b'al, etc. up to 13 B'en. The trecena day numbers then start again at 1 while the named-day sequence continues onwards, so the next days in the sequence are 1 Ix, 2 Men, 3 K'ib', 4 Kab'an, 5 Etz'nab', 6 Kawak, and 7 Ajaw. With all twenty named days used, these now began to repeat the cycle while the number sequence continues, so the next day after 7 Ajaw is 8 Imix'. The repetition of these interlocking 13- and 20-day cycles therefore takes 260 days to complete (that is, for every possible combination of number/named day to occur once).
[edit] Origin of the Tzolk'in
The exact origin of the Tzolk'in is not known, but there are several theories. One theory is that the calendar came from mathematical operations based on the numbers thirteen and twenty, which were important numbers to the Maya. The numbers multiplied together equal 260. Another theory is that the 260-day period came from the length of human pregnancy. This is close to the average number of days between the first missed menstrual period and birth, unlike Naegele's rulewhich is 40 weeks (280 days) between the last menstrual period and birth. It is postulated that midwives originally developed the calendar to predict babies' expected birth dates. The deity Ix Chel is thus of particular interest due to her mythic relation to the calendar.
A third theory comes from understanding of astronomy, geography and archaeology. The mesoamerican calendar probably originated with the Olmecs, and a settlement existed at Izapa, in southeast Chiapas Mexico, before 1200 BC. There, at a latitude of about 15° N, the Sun passes through zenith twice a year, and there are 260 days between zenithal passages, and gnomons (used generally for observing the path of the Sun and in particular zenithal passages), were found at this and other sites. The sacred almanac may well have been set in motion on August 13, 1359 BC, in Izapa. Vincent H. Malmström, a geographer who suggested this location and date, outlines his reasons:
A third theory comes from understanding of astronomy, geography and archaeology. The mesoamerican calendar probably originated with the Olmecs, and a settlement existed at Izapa, in southeast Chiapas Mexico, before 1200 BC. There, at a latitude of about 15° N, the Sun passes through zenith twice a year, and there are 260 days between zenithal passages, and gnomons (used generally for observing the path of the Sun and in particular zenithal passages), were found at this and other sites. The sacred almanac may well have been set in motion on August 13, 1359 BC, in Izapa. Vincent H. Malmström, a geographer who suggested this location and date, outlines his reasons:
(1) Astronomically, it lay at the only latitude in North America where a 260-day interval (the length of the "strange" sacred almanac used throughout the region in pre-Columbian times) can be measured between vertical sun positions–an interval which happens to begin on the 13th of August–the day the peoples of the Mesoamerica believed that the present world was created; (2) Historically, it was the only site at this latitude which was old enough to have been the cradle of the sacred almanac, which at that time (1973) was thought to date to the 4th or 5th centuries BCE; and (3) Geographically, it was the only site along the required parallel of latitude that lay in a tropical lowland ecological niche where such creatures as alligators, monkeys, and iguanas were native–all of which were used as day-names in the sacred almanac.[10]
Malmström also offers strong arguments against both of the former explanations.
A fourth theory is that the calendar is based on the crops. From planting to harvest is approximately 260 days.[citation needed]
A fourth theory is that the calendar is based on the crops. From planting to harvest is approximately 260 days.[citation needed]
[edit] Haab'
Seq. Num. | Name of month | Glyph example | meaning | Seq. Num. | Name of month | Glyph example | meaning |
---|---|---|---|---|---|---|---|
1 | Pop | mat | 10 | Yax | green storm | ||
2 | Wo' | black conjunction | 11 | Sak' | white storm | ||
3 | Sip | red conjunction | 12 | Keh | red storm | ||
4 | Sotz' | bat | 13 | Mak | enclosed | ||
5 | Sek | watering time | 14 | K'ank'in | yellow sun | ||
6 | Xul | dog | 15 | Muwan' | owl | ||
7 | Yaxk'in' | new sun | 16 | Pax | planting time | ||
8 | Mol | water | 17 | K'ayab | turtle | ||
9 | Ch'en | black storm | 18 | Kumk'u | granary | ||
19 | Wayeb' | five unlucky days |
Main article: Haab'
The Haab' month names are known today by their corresponding names in colonial-era Yukatek Maya, as transcribed by 16th century sources (in particular, Diego de Landa and books such as the Chilam Balam of Chumayel). Phonemic analyses of Haab' glyph names in pre-ColumbianMaya inscriptions have demonstrated that the names for these twenty-day periods varied considerably from region to region and from period to period, reflecting differences in the base language(s) and usage in the Classic and Postclassic eras predating their recording by Spanish sources.[13]
Each day in the Haab' calendar was identified by a day number in the month followed by the name of the month. Day numbers began with a glyph translated as the "seating of" a named month, which is usually regarded as day 0 of that month, although a minority treat it as day 20 of the month preceding the named month. In the latter case, the seating of Pop is day 5 of Wayeb'. For the majority, the first day of the year was 0 Pop (the seating of Pop). This was followed by 1 Pop, 2 Pop as far as 19 Pop then 0 Wo, 1 Wo and so on.
As a calendar for keeping track of the seasons, the Haab' was a bit inaccurate, since it treated the year as having exactly 365 days, and ignored the extra quarter day (approximately) in the actual tropical year. This meant that the seasons moved with respect to the calendar year by a quarter day each year, so that the calendar months named after particular seasons no longer corresponded to these seasons after a few centuries. The Haab' is equivalent to the wandering 365-day year of theancient Egyptians.
[edit] Calendar Round
Main article: Calendar Round
Because the two calendars were based on 260 days and 365 days respectively, the whole cycle would repeat itself every 52 Haab' years exactly. This period was known as a Calendar Round. The end of the Calendar Round was a period of unrest and bad luck among the Maya, as they waited in expectation to see if the gods would grant them another cycle of 52 years.
[edit] Long Count
Main article: Mesoamerican Long Count calendar
The Maya name for a day was k'in. Twenty of these k'ins are known as a winal or uinal. Eighteen winals make one tun. Twenty tuns are known as a k'atun. Twenty k'atuns make a b'ak'tun.
The Long Count calendar identifies a date by counting the number of days from the Mayan creation date 4 Ahaw, 8 Kumk'u (August 11, 3114 BC in the proleptic Gregorian calendar or September 6 in the Julian calendar). But instead of using a base-10 (decimal) scheme like Western numbering, the Long Count days were tallied in a modified base-20 scheme. Thus 0.0.0.1.5 is equal to 25, and 0.0.0.2.0 is equal to 40. As the winal unit resets after only counting to 18, the Long Count consistently uses base-20 only if the tun is considered the primary unit of measurement, not the k'in; with the k'in and winal units being the number of days in the tun. The Long Count 0.0.1.0.0 represents 360 days, rather than the 400 in a purely base-20 (vigesimal) count.
Days | Long Count period | Long Count period | Approx solar years |
---|---|---|---|
1 | = 1 K'in | ||
20 | = 20 K'in | = 1 Winal | 0.0548 |
360 | = 18 Winal | = 1 Tun | 0.985 |
7,200 | = 20 Tun | = 1 K'atun | 19.7 |
144,000 | = 20 K'atun | = 1 B'ak'tun | 394.3 |
Since the Long Count dates are unambiguous, the Long Count was particularly well suited to use on monuments. The monumental inscriptions would not only include the 5 digits of the Long Count, but would also include the two tzolk'in characters followed by the two haab' characters.
Misinterpretation of the Mesoamerican Long Count calendar is the basis for a New Age belief that a cataclysm will take place on December 21, 2012. December 21, 2012 is simply the day that the calendar will go to the next baktun.
Sandra Noble, executive director of the Mesoamerican research organization FAMSI, notes that "for the ancient Maya, it was a huge celebration to make it to the end of a whole cycle". She considers the portrayal of December 2012 as a doomsday or cosmic-shift event to be "a complete fabrication and a chance for a lot of people to cash in."[14] The 2009 science fiction apocalyptic disaster film 2012 is based on this belief.
[edit] Supplementary Series
Many Classic period inscriptions include a series of glyphs known as the Supplementary Series. The operation of this series was largely worked out by John E. Teeple (1874–1931). The Supplementary Series most commonly consists of the following elements:[edit] Lords of the Night
Main article: Lords of the Night
[edit] Lunar Series
A lunar Series generally is written as five glyphs that provide information about the current lunation, the number of the lunation in a series of six, the current ruling lunar deity and the length of the current lunation.[edit] Moon age
The Maya counted the number of days in the current lunation. They started with zero on the first night they saw the thin crescent moon. The age of the moon was depicted by a set of glyphs that mayanists coined glyphs D and E:- D glyphs were used for lunar ages up to 19 days, with the number of days that passed from the new moon accompanied by a glyph that resembled a hand.
- For lunar ages from 20 to 30, only the additional days from 20 were depicted accompanied by a glyph different from the first 20 days.
No comments:
Post a Comment
Jayant Parkash Is Welcome All world to my blog